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Using functional magnetic resonance imaging (fMRI), we recently demonstrated that nonmedicated patients
with a first episode of unipolar major depression (MDD) compared to matched controls exhibited an
abnormal neural filtering of irrelevant visual information (Desseilles et al., 2009). During scanning, subjects
performed a visual attention task imposing two different levels of attentional load at fixation (low or high),
while task-irrelevant colored stimuli were presented in the periphery.
In the present study, we focused on the visuo-attentional system and used “Dynamic Causal Modeling”
(DCM) on the same dataset to assess how attention influences a network of three dynamically-
interconnected brain regions (visual areas V1 and V4, and intraparietal sulcus (P), differentially in MDD
patients and healthy controls. Bayesian model selection (BMS) and model space partitioning (MSP) were
used to determine the best model in each population. The best model for the controls revealed that the
increase of parietal activity by high attention load was selectively associated with a negative modulation of P
on V4, consistent with high attention reducing the processing of irrelevant colored peripheral stimuli. The
best model accounting for the data from the MDD patients showed that both low and high attention levels
exerted modulatory effects on P. The present results document abnormal effective connectivity across visuo-
attentional networks in MDD, which likely contributes to deficient attentional filtering of information.
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Introduction

Major depressive disorder (MDD) is characterized by cognitive
and affective abnormalities (Chamberlain and Sahakian, 2006).
Neuroimaging studies showed that these symptoms are mainly
associated with impairments within fronto-limbic network involved
in affective regulation and fronto-parietal networks involved in
attention and executive functions (Mayberg et al., 1999). Lavie et al.
(2004, 2005) proposed the ‘Load Theory’ of attention in which
distractor rejection depends on the level and type of attentional load
involved by the current task. This theory of attention and cognitive
control implies reciprocal interactions for the processing of task-
relevant and task-irrelevant information. On the one hand, increased
perceptual demands (or load) related to the processing of task-
relevant stimuli reduce the processing of task-irrelevant stimuli. On
the other hand, irrelevant stimuli may also interfere with the
processing task-relevant stimuli.

In a recent fMRI study, we scanned 14 drug-free MDD patients and
14 matched controls when they performed a visual attention task with
two different levels of attentional load at fixation (low or high), while
task-irrelevant colored stimuli were presented in the periphery
(Desseilles et al., 2009). Healthy subjects showed increased responses
in the color responsive area V4 during the easy, low-load condition
compared to the difficult, high-load condition, consistent with the Load
Theory (Lavie, 2005). By contrast, MDD patients showed decreased V4
activity during both the low and high load task (vs. a baseline, passive
viewing condition). Using a psychophysiological interaction approach
(PPI, (Friston et al., 1997), we also found enhanced functional
connectivity in the context of low vs. high attentional load between
intraparietal sulcus (P) and V4 selectively in controls but not in MDD
patients (Desseilles et al., 2009).

While functional connectivity as assessed by PPI highlights cor-
relations between activities in different regions (“physiological”) as a
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function of experimental (“psychological”) contexts, it does not pro-
vide any measurement of the directionality or causality for the
observed correlations between brain regions. Here we sought to
overcome these limitations by assessing effective connectivity with
Dynamic Causal Modeling (DCM), which determines causal relation-
ships across potentially distributed neural networks (Friston et al.,
2003; Stephan et al., 2010).

In a DCM approach, a model is defined by a set of connected brain
areas influenced by specific inputs. To date, few fMRI studies have
used DCM to assess effective connectivity during cognitive or
emotional task in MDD patients (Schlosser et al., 2008; Almeida
et al., 2009). Overall studies assessing connectivity (either effective or
not) mainly focused on fronto-cingulate (Anand et al., 2005; Schlosser
et al., 2008; Vasic et al., 2009) or fronto-amygdala connectivity (Irwin
et al., 2004; Johnstone et al., 2007; Almeida et al., 2009), and pointed
to a failure to down-regulate rostral anterior cingulate cortex (ACC)
and amygdala responses. Several studies showed deficient down-
regulation within the default-mode network, including the ventro-
medial prefrontal and the (subgenual) anterior cingulated cortex
(Greicius et al., 2007; Sheline et al., 2009). How MDD affects effective
connectivity across a distributed visuo-attentional network remains
unclear.

Our goal was to better characterize the causal influence of top-
down modulation of visual areas by parietal cortex, using a com-
bination of DCM fitting, model space partitioning (MSP), Bayesian
model selection and averaging (BMS and BMA), applied to each
population (Penny et al., 2004; Stephan et al., 2009, 2010). We could
thus, within a Bayesian framework, characterize the brain connectiv-
ity of the two groups of subjects, as well as their differences. We
hypothesized that controls would display a connectivity network
compatible with the Load Theory (Lavie et al., 2004) with a reduced
drive of the activity in V4 in high attentional loadmediated either by a
direct action of P on V4 or by an indirect decrease of the gating from
V1 to V4 (Schwartz et al., 2005; Stephan et al., 2008). We
hypothesized that the connectivity of this visuo-attentional system
would differ betweenMDD and controls in two distinct ways. First, we
postulate that the low attention condition might modulate the
observed network dynamics in MDD, but not in controls. Second, at
the network level, the posterior estimates of the attentionmodulation
should differ between MDD and controls (e.g. differential modulation
of V4 activity by P). Importantly, we expect that MDD should not
affect the global architecture of this visuo-attentional network.

Material and methods

Patients and controls

Details for the patients and controls recruitment can be found in
(Desseilles et al., 2009). In summary, 14 subjects with a first lifetime
episode of unipolar major depressive disorder, with no prior an-
tidepressant or antipsychotic treatment, were included in the
experimental protocol. Fourteen healthy controls were selected to
match the MDD patients for gender, age, and socio-cultural back-
ground. None of them reported any severe medical problem, or any
neurological or psychiatric history. After providing informed consent,
they were also screened using the Structured Clinical Interview for
Axis I DSM-IV Disorders (SCID-IV; (Spitzer et al., 1994) and the
Hamilton Depression Rating Scale (HDRS, (Hamilton, 1960).

Experimental paradigm

Details for the experimental paradigm can be found in (Desseilles
et al., 2009). During the main fMRI experiment, the participants
performed a detection task on a rapid successive visual presentation
(RSVP) of colored letters (one letter every 750 ms; 500 ms duration
each, plus 250 ms blank) that was shown on a fixed central location at
fixation. This RSVP stream consisted of T-shaped stimuli displayed
with two possible orientations (upright or upside-down) and
8 different colors in a pseudorandom order. Blocks of 20-sec with
Mondrian-like stimuli, referred later as “colored block” stimuli,
formed by a 20°×20° grid of colored rectangles, presented bilaterally
at 6 degrees of visual angle from fixation (subtending 6°×10°),
alternated with blocks without peripheral stimuli. All visual stimuli
were generated using a MATLAB Toolbox, allowing visual presenta-
tion and response-recording with precise timing (Cogent, http://
www.vislab.ucl.ac.uk/Cogent/).

Participants performed either a low load or a high load task, orwere
required to only fixate the central RSVP (40-sec period each) during
scanning. The low load task required a key-press for any red T
irrespective of its orientation. The high load task required a key-press
for any upright yellow T or upside-down blue T. Baseline control
condition required passive fixation of the letter stream but no key
press. Low load, high load, and baseline passive viewing periods
alternated in a pseudo-random order (randomized across partici-
pants) during one single continuous scanning session. Items that
required a button-press response during both low andhigh attentional
load appeared on average every 15 stimuli. In other words, only the
task instructions distinguished the high load and low load conditions.
The peripheral Mondrian-like stimuli were always irrelevant to the
central task, and participants were instructed to ignore them.

fMRI data acquisition procedure

Data were acquired with a 3T head-only MR scanner (Allegra,
Siemens, Erlangen) using a gradient echo EPI sequence (32 transverse
slices with 30% gap, TR: 2130 ms, TE: 40 ms, FA: 90°, FOV:
220×220 mm, matrix size: 64×64×32, voxel size: 3.4×3.4×3 mm).
Functional volumes (n=255) were acquired during one single
continuous scanning run (sequential scheme of acquisition). The
first three volumeswere discarded to account for T1 saturation effects.
A structural MR scan was acquired at the end of the experimental
session (T1-weighted 3D MP-RAGE sequence, TR: 1960 ms, TE:
4.43 ms, TI: 1100 ms, FOV: 230×173 mm, matrix size: 256×
192×176, voxel size: 0.9×0.9×0.9 mm). During scanning, eye move-
ments were continuously monitored using an infrared eye tracking
system (LRO5000, Applied Science Laboratories, Bedford, MA, sam-
pling rate=60 Hertz). Eye tracking data were used to ensure that all
subjects included in the analyses maintained good central fixation
during the whole scanning session.

Data used for DCM

The fMRI data of each subject were spatially preprocessed using
the SPM2 toolbox (http://www.fil.ion.ucl.ac.uk/spm). The functional
volumes were first realigned, then normalized to the MNI template
space, using the EPI template provided with SPM toolbox, and finally
smoothed with an 8×8×8 mm Gaussian kernel. The structural MRI
was registered to the fMR images and warped along into the MNI
template space.

Based on the results from our previous study using the same
paradigm and from research showing attentional modulation of
networks dynamics (Friston and Buchel, 2000; Friston et al., 2003), we
considered 3 main “regions of interest” (ROI) for our DCM analysis:
the right early visual region (V1) and the right color responsive area
(V4), both likely to process the visual aspects of the colored block
stimuli, and the right intraparietal sulcus (P) linked to top-down
attentional modulation of visual areas (Corbetta and Shulman, 2002).
We chose regions in the right hemisphere because they showed
robust activation in all our subjects (at the fixed effect level) and
because attentional effects in V4 were also stronger on the right for
both populations. For each subject, the time series of activity for each
area was extracted as the first eigen-component of the time series of
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the voxels within a ROI. These time series were adjusted for subject's
movements using the movement parameters as regressors, and the
button-pressing responses (corresponding to the detection of targets)
convolved with the standard hemodynamic response. Using the
individual statistical map displayed over the subject's structural MRI,
each ROI was defined as a sphere of 10 mm radius, centered
individually on the local activation maximum closest to each peak
of interest from the group analysis (coordinates in MNI space: V1 [12,
−86, −8] mm ; V4 [22, −74, −8] mm; P [30, −50, 50] mm).
Dynamic causal modeling

Dynamic causal modeling (DCM) is a mathematical framework
used to characterize the effective connectivity at the neuronal level,
i.e. the causal influence that one brain region exerts over another
brain region (Friston et al., 2003; Stephan et al., 2010). DCM for fMRI is
an input-state-output deterministic model of the neuronal activity
across a network of brain regions (Friston et al., 2003). Inputs consist
in direct stimuli, such as sensory stimulations, or contextual
conditions provided by behavioral task instructions, history of the
stimuli (e.g. in memory studies), pharmacological manipulations, etc.
These inputs are exactly the same as those used to build design
matrices in conventional fMRI analyses and are the “causes” used in
the dynamical model. The brain areas considered are directionally
connected such that they form a dynamic causal network. The direct
inputs excite some brain areas and the induced activity propagates
through the network, while the contextual inputs modulate the
directional connections of the network. Finally, the neuronal activity
from each brain area is translated into BOLD signal, i.e. an observable
output, via a hemodynamic model (Buxton et al., 1998; Friston et al.,
2000; Stephan et al., 2007a,b). Once the architecture of the model is
specified, the coupling and hemodynamic parameters of the model
can be estimated from the known inputs and recorded BOLD signal.
This estimation proceeds with a Bayesian scheme (Friston, 2002;
Friston et al., 2003, 2007), with shrinkage priors on the coupling
parameters and empirical priors for the hemodynamic parameters,
and provides a posteriori estimates of the model parameters.

Within a DCM framework, multiple hypotheses on brain function-
ing are expressed by different connectivity models. Several competing
models are therefore fitted to the same data then compared across
subjects (Penny et al., 2004; Stephan et al., 2009). Families of models,
i.e. separate subsets of models sharing a specific feature, can com-
pared and models within a chosen family can be averaged (Penny
et al., 2010). This family comparison can answer a question such as: “Is
thismodel feature necessary to explain the observed data, irrespective
of the other characteristics of the model?” Finally an optimal model
for a population can be identified within a family of models and the
model parameters can be averaged (via Bayesian model averaging,
BMA) across subjects. This BMA provides the full posterior distribu-
tion of the parameters of the model averaged across the subset of
models and group of subjects.

Equivalently to standard multi-subject fMRI analyses, family and
model selection (within a group) can proceed in a “fixed effect” (FFX)
or “random effect” (RFX) way (Stephan et al., 2010). Given the nature
of the brain mechanism modelled here (basic level visuo-attentional
process) and the homogeneity of the subjects in each group, a FFX
approach is preferred here both at the family and model inference
level. Indeed with a FFX scheme, one assumes that every subject (in a
group) uses the same model architecture, an assumption commonly
accepted (Kumar et al., 2007; Stephan et al., 2007a,b; Acs and
Greenlee, 2008; Rowe et al., 2010) and warranted when studying a
basic physiological mechanism that is unlikely to vary across subjects
(Stephan et al., 2010). The results of the RFX analysis, both at family
and model level, are available in the supplementary material section
for comparison.
The two groups of subjects, controls and MDD, can be compared at
three different levels (family, model and parameter level). Using the
same set of models and families of models for both groups, the
posterior probability of each family and model will therefore be
estimated for each group and the output directly compared. For the
parameter level inferences, we chose to stay within the same Bayesian
framework and to build on the two previous inference levels:
“family,” then “model,” then “parameter.” Group-BMA provides the
full posterior probability of each parameter and one can check the
posterior probability of any parameter to be significantly bigger (or
smaller) than zero (Stephan et al., 2010). The parameters common to
both group models (thus having the same interpretation) can also be
directly compared: the posterior distribution of the difference
between the group parameters was estimated from the posterior
distribution of the parameters from each group.

We used the latest version of the SPM8 toolbox (http://www.fil.
ion.ucl.ac.uk/spm) for all the DCM estimations and comparisons.
Attentional models

Among the almost infinite number of theoretically possible bilinear
and non-linear models which can be built with 3 brain areas and 2
types of inputs, we consider here only a sub-set of 10 models, with
plausible physiological connections, which allow us to test our
hypothesis (Stephan et al., 2010). The selection of these models is
based on the paradigmused, neuroanatomy and the literature (Friston
and Buchel, 2000; Friston et al., 2003). The endogenous network
connecting the 3 areas (V1, V4 and P) is the same for all themodels and
consists in a cascade of forward and backward connections between
V1 and V4, and between V4 and P (Fig. 1). The central relevant stimuli
formed a continuous stream of stimulation, generating steady-state
activity, and thus are not explicitly modeled. Our goal is rather to
model the variation of neuronal activity, induced by the peripheral
stimuli and the top-down attentional demand of the discrimination
task, around this steady-state.

In all 10 models, blocks of irrelevant color stimuli presented
bilaterally enter the network in V1 as a direct visual input while the
models differ between each other only with respect to the level of
attentional load (high and low) and/or the modulation of the
connections by the attentional load. These models naturally split
into 2 subsets or “Families” of 5 models each: including either both
low and high attention contextual inputs (Family A comprising
models A.1 to A.5), or only the high attention contextual input (Family
B, comprising models B.1 to B.5, Fig. 1). By modeling low and high
attention level separately, with models A.1-5, the relative effect of
attention level is therefore not fixed, and the models B.1-5 simply
assume that the low attention context does not affect the network
dynamics.

In models A.1 and B.1 (respectively A.2 and B.2), the attention
input simply modulates the strength of the V1-to-V4 forward
(respectively, P-to-V4 backward) connection. With these models,
the attention only modulates how the activity propagates through the
network. Models A.3 and B.3 are similar to models A.1 and B.1
respectively, except for the additional direct influence of attention on
activity in P. In models A.4 and B.4, the attentional effect directly
drives the activity in P, which in turnmodulates the V1-to-V4 forward
connection. The modulating effect of attention is thus carried out
indirectly via area P. Finally model A.5 (respectively, B.5) is a
combination of models A.1 and A.4 (respectively, B.1 and B.4). The
effect of attention is thus twofold: direct on the V1-to-V4 forward
connection and indirect via area P.

The 10 DCM models were fitted with the data from each of the 14
controls and 14 MDD subjects. This provided the model log-evidence
and posterior parameter estimates for each of the 280 (2×14×10)
model fits.

http://www.fil.ion.ucl.ac.uk/spm
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Fig. 1. Attentional models considered: Family A, consisting of models A.1 to A.5, are a subset of models which include both attention loads, high and low, contextual inputs. Another
subset of models, Family B, models B.1 to B.5 (shaded box), is similar to Family A but only includes the high attentional contextual input, i.e. low attention is not taken into account.
The network of interconnected regions includes visual area V1, colour responsive area V4, and superior parietal cortex (P). Plain arrows indicate the direct driving of an area by an
external input or another area. Dashed lines represent the gating influence of one context, here low or high attention, over the connection between two different areas, here V1-to-V4
or P-to-V4. Similarly dashed-dotted lines represent the gating influence of one area, here P, over the connection between two different areas. For dashed and dashed-dotted lines, the
end dot indicates the location of the modulatory effect by the input or area.
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Results

Details for the clinical characteristics and for the standard fMRI
results can be found in Desseilles et al. (2009).

Behavioral results

We found slower reaction-times, reduced hit rates and more false
alarms during the high compared to the low load condition, indicating
that the instructions successfully modulated task difficulty in both
groups. Eye-tracking data demonstrated that both populations fixated
the central stream of letters equally well.

Family-level inference

The numerical results for both control and MDD groups family
partitioning are summarized in Table 1. For the control group, Family
Bmodels in which only high attention affects the network dynamics is
more likely than Family A, models including both low and high
attention, regardless of any other aspect of the models (posterior
probability, p=1.0 versus p=3.964×10−17). By contrast, for the
MDD group, Family A is significantly more likely (p=1.0) than Family
B (p=4.322×10−42). This constitutes a significant proof, at the group
level, that the low attention context is equivalent to the baseline
passive viewing context for the controls, and that both low and high
Table 1
Estimated family posterior probabilities for each group.

GROUP Family A Family B

Controls 3.9640×10−17 1.0
MDD 1.0 4.3219×10−42
attention context should be included in the optimal model for the
MDD patients. For the sake of completion, the results for an RFX
approach, which are congruentwith the FFX approach, are available in
Supplementary materials.
Model-level inference and model averaging

The numerical results for both control and MDD groups model
selection are summarized in Table 2. For the control group, we have
significant evidence in favor of model B.4 (posterior probability
p=1.0), versus any other model (p=3.159×10−11). Similarly, the
optimal model for the MDD patients is model A.4 (p=1.0, alternative
hypothesis p=0.716×10−11). The only difference between models
A.4 and B.4 is the inclusion (or not) of the ‘Low Attention’ contextual
influence on the parietal area. Interestingly, the architecture of these
models (see Fig. 2) is similar to that found previously in a healthy
subject but with a different paradigm (Stephan et al., 2008). For the
sake of completion, the results for an RFX approach, which are
congruent with the FFX approach, are available in Supplementary
materials.

Using BMA, the full posterior distribution of the optimal model
parameterswithineach groupwas calculated. Themaximumaposteriori
(MAP) values are shown in Fig. 2a and b for the control andMDD group
Table 2
Model selection in “winning family” for each group: model index, posterior probability
of selected model and probability of alternative hypothesis.

GROUP Model index Posterior probability Alternative probability

Controls B.4 1.0 0.3159×10−12

MDD A.4 1.0 0.0716×10−12



Fig. 2.Models selected: (a) B.4 for the healthy controls group, and (b) A.4 for the MDD patients group. The values indicated correspond to the maximum a posteriori estimates of the
parameters after the group-BMA. The values in brackets are the confidence that these MAP estimates are different from zero.
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respectively. The posterior confidence that these values were different
from zero was calculated and are indicated in parenthesis.

Parameter-level inference

Table 3 summarizes the connection parameter estimates from
each group obtained after BMA, as well as the difference (MDDminus
control) between parameters common in both group optimal model.
The value in parenthesis is the posterior probability of the parameter
to be bigger (respectively smaller) than zero for a positive
(respectively negative) MAP value. All the tests were performed in a
Bayesian framework in line with the previous steps: parameter
estimation, family and model selection. With the control group, the
high attentional load effect positivelymodulates parietal cortexwhich
in turn weakens V4 activity either directly, P-to-V4 connection, or
indirectly, P-to-(V1-to-V4 gating). For the MDD group, most para-
meters are significantly different from the values observed in the
Table 3
Maximum a posteriori connectivity values from the Bayesian model averaging (BMA)
for the optimal model in each group, and maximum a posteriori difference of
connectivity parameters between groups. The posterior probability for each parameter
(or difference) to be bigger (or smaller for negative values) than zero is indicated in
parentheses.

Connection
names

Control group, BMA
MAP estimate of
parameter, and
posterior p-value

MDD group, BMA
MAP estimate of
parameter, and
posterior p-value

MAP of parameter
difference (MDD-CO),
and posterior p-value

V1-to-V4 0.3397 (1.0)* 0.3178 (1.0)* −0.0215 (0.79)
V4-to-V1 1.3172 (1.0)* 0.8402 (1.0)* −0.4757 (0.98)*
V4-to-P −0.1215 (0.99)* 0.3472 (0.99)* 0.4685 (1.0)*
P-to-V4 −0.2833 (1.0)* 0.3424 (0.99)* 0.6274 (1.0)*
ColBlock-to-V1 0.0339 (1.0)* 0.0311 (1.0)* −0.0029 (0.86)
LowAtt-to-P – −0.0007 (0.73) –

HighAtt-to-P 0.0107 (1.0)* 0.0033 (1.0)* −0.0074 (1.0)*
P-to-(V1-to-V4) −0.4068 (0.79) 0.3519 (0.77) 0.7594 (0.87)

* value (parameter estimate or between group parameter difference) significantly
different from zero, based on the posterior probability (pN0.95).
control group. Nevertheless at the lowest level of the networks, V1
response to the colored stimuli and its projection onto V4 are almost
identical in both groups.

Another approach would have been to extract the MAP parameter
values from each subject individually and proceed with a classic
frequentist test: t-test or ANOVA, within or between groups
(Schlosser et al., 2008). The results of such an approach are actually
very similar to those obtained with a Bayesian approach (see
Supplementary Material).

Discussion

Consistent with the Load Theory of attention and cognitive control
(Lavie et al., 2004; Lavie, 2005), high perceptual demands of a task at
fixation reduce visual responses to peripheral task-irrelevant stimuli
(Schwartz et al., 2005). In the present study, we used a DCM approach
to show that abnormal effects of attention on the processing of
irrelevant stimuli in MDD is mediated by modifications in effective
connectivity within a distributed visuo-attentional network (Des-
esseilles et al., 2009). Specifically, DCM allowed us to explore how
inputs and task contexts may interact to shape the dynamics of
effective connectivity across brain regions, differentially in healthy
and MDD populations. Our results suggest that the description of the
propagation of complex influences such as attention can be useful to
better understand functional changes underlying the pathophysiology
of depression.

In the present DCM studywe tested in 14MDDpatients (compared
to 14 healthy controls) whether changing attentional demands of a
central task would interfere with parietal top-down control on visual
cortex activity elicited by task-irrelevant colored visual stimuli
presented in the periphery. As in a previous DCM study of attention
to motion (Friston et al., 2003; Stephan et al., 2008), we tested several
DCM models encompassing visual and attentional regions. Here we
selected the following regions in the right hemisphere: primary visual
area V1, color responsive area V4, and intraparietal sulcus (P).

In healthy controls, Family level inference showed that the low
attentional load condition did not influence task-irrelevant colored

image of Fig.�2
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stimuli processing independently of the actual underlying model
architecture. In a next step, model selection showed that model B.4
(see Fig. 1) was optimal for the healthy controls. In this model,
increase of attention demands in high attentional load condition
activated parietal cortex which in turn diminished V4 activity both
directly (parietal-to-V4 connection) and indirectly (parietal to V1-to-
V4 gating).

These results are congruent with an increased filtering of task-
irrelevant colored stimuli when attentional demand for the central
task (high attentional load condition) increases (Lavie, 1995, 2005).
Similarly, in our recent study (Desseilles et al., 2009), the fMRI signal
in V4 from the controls was maintained during low attentional load
condition but decreased during the high load condition, while
functional connectivity measured by PPI increased in the context of
low (vs. high) attentional load between right intraparietal sulcus and
V4. Unfortunately, given the correlational nature of PPI, it was not
possible to interpret the causality of activity modulation between
these two regions (top-down P to V4 or bottom-up V4 to P). Our DCM
analysis revealed that in low attentional load condition, activity in P is
driven by V4 (model B.4), which is congruent with our PPI analysis. In
high attentional load condition, activity in P is driven by attention
which in turn weakens V4 activity, both directly and indirectly. This
suggests a correlation between P and V4 in low attentional load
condition with a predominance of bottom-up effects in V4 and P; and
a decorrelation between P and V4 in high attention load condition
with a predominance of top-down control from P exerted on V4,
which may reflect control processes deployed to avoid automatic
orienting of attention on peripheral stimuli. Thus, our DCM results not
only confirm our PPI results but go well beyond these previous results
by revealing the exact pattern of effective connectivity in healthy
subjects underlying attention-mediated suppression of information in
visual regions.

For theMDD patients, Family level inference showed that both low
and high attentional load conditions influenced the processing of the
task-irrelevant colored stimuli independently of the actual underlying
model architecture. In a second step, model selection identifiedmodel
A.4 (see Fig. 1) as the best model for the MDD data. These results
indicate thatmajor depression can profoundlymodify the dynamics of
the attentional network involved in this simple visual task. In model
A.4, both low and high attentional loads directly drive P, which in turn
modulates positively V4 either directly (P to V4 connection) or
indirectly (V1-to-V4 gating). It may seem paradoxical that, in the
MDD group, the drive of P by the “Low Attention” condition is not
significantly different from zero, even though the inclusion of this
connection is significant at the family and model level inference. In
fact Bayesian estimation and averaging account for the covariance
between the parameters. A strong or consistent covariance between a
pair of parameters across subjects could lead to less reliable pa-
rameter estimates when looked at individually, leading to a reduced
sensitivity (Rowe et al., 2010). Thus the estimated posterior of a single
parameter could well be not significantly different from zero on
average but the connection modelled still necessary from a model
selection point of view.

In Desseilles et al. (2009), we found a decreased fMRI signal in V4 in
MDD patients during low attentional load condition (vs. baseline,
passive viewing condition) indicating an abnormal filtering of task-
irrelevant stimuli in that condition as compared to healthy controls,
but with no further decrease during high load. PPI analyses did not
reveal any modification of functional connectivity between right
intraparietal sulcus and V4 as a function of attentional load. However,
the patients clearly showed a behavioral effect of attention (slower
reaction times andmore errors during high compared to low load) and
activity level in parietal regions were also strongly modulated by task-
load. Our DCM study clarifies this seemingly paradoxical result by
revealing indirect effects of attention on the V1-to V4 forward con-
nection (indirect positive drive from P) and on V4 (direct positive
drive from P) that increased with attentional load. Our results dem-
onstrate that the same dysfunctional connectivity network operates
for lowandhigh attentional loads,with counterbalanced effectswithin
the model as the connections weights increased with higher
attentional demand. Our DCM findings suggest that the network
dynamics accounting for the effects of attention is abnormal not only
for the high load condition but also during the low load condition. The
confrontation of the results for the control and MDD groups also
suggests that the predictions from the Load Theory about top-down
control are valid in healthy (decrease of V4 activity by increased
attentional load) but not in pathological condition (increase of V4
activity by increased attentional load driven either directly or
indirectly via P). Decreased fMRI signal in V4 in MDD patients during
low attentional load condition does not correspond to a better filtering
of task-irrelevant stimuli but to a counterproductive recruitment of
their attentional resources within a dysfunctional network dynamics.

One possible limitation of the present findings is that they are
based on relatively small sample of subjects (14 subjects in each
group). This is due to the very strict inclusion criteria of MDD patients
(first episode, drug-free, no other psychiatric comorbidity) and very
careful selection of the corresponding healthy matched controls. In
addition, we restricted our analysis to the visuo-attentional system as
was done in previous DCM studies in which attentional effects on
visual responses were also explored (e.g. (Friston et al., 2003). Yet, in
our previous classical fMRI analysis, we found some differential effects
of load in medial prefrontal regions selectively in the patients.
Whether this region also exerts or receives modulatory influences
from the visuo-attentional network still need to be assessed in future
studies.

Conclusion

In the present study, we show that attentional demands influence
the dynamics of activity within a visuo-attentional network, but in a
distinct manner in depressed patients and healthy controls. Moreover,
these functional changes in MDD were observed when the patients
were exposed to simple non-emotional visual processing. These
results do not only improve our understanding of the cerebral mech-
anisms underlying cognitive-perceptual deficits in depression but
may also have useful therapeutic implications. Indeed, because MDD
patients present a counterproductive top-down recruitment of their
attentional resources, an attentional training aiming at increasing the
control of attentional resources could be proposed. By decreasing the
disordered self-focused ruminations (Deyo et al., 2009), metacogni-
tive therapy such as mindfulness-based strategies (Bondolfi et al.,
2009) are likely to substantially improve top-down attentional
recruitment. A promising extension of the present study might be to
more systematically investigate to what extent such therapeutic
interventions promote a normalization of regional brain activity or of
network connectivity (or of both) in MDD.
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